Notice: Undefined offset: 1 in /var/www/jmdr-idea.com/article-detail-page.php on line 103
From Pixels to Prognosis: Radiomics and AI Applications in Maxillofacial Radiology
 
  • P-ISSN 2277-3525 E-ISSN 2582-7901

Journal of Multidisciplinary
Dental Research

Article

Journal of Multidisciplinary Dental Research

Volume: 11, Issue: 2, Pages: 69–75

Review Article

From Pixels to Prognosis: Radiomics and AI Applications in Maxillofacial Radiology

Received Date:12 May 2025, Accepted Date:12 August 2025, Published Date:04 December 2025

Abstract

Recently, the beneficial impacts of digitalization in healthcare have facilitated the advancement of innovative methodologies in diagnosis and treatment planning through the integration of medical data with artificial intelligence algorithms. Radiomics, a pioneering field, underlies image-based decision support systems, which use statistics and artificial intelligence to extract quantitative data from medical pictures. Quality and accuracy are required throughout the radiomics workflow, including image acquisition, model construction, and clinical application. Due to the complexity of maxillofacial anatomy, radiomics and artificial intelligence using cross-sectional three-dimensional imaging techniques like CT and CBCT have gained popularity in dentistry. Clinical models must meet accuracy, repeatability, and generalizability standards. Future research expects radiomics to improve dentistry diagnosis, treatment planning, and disease prognosis.

Keywords: Artificial intelligence, Dentistry, Maxillofacial radiology, Radiomics

References

  1. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Stiphout RGPMv, Granton P, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer. 2012;48(4):441–446. Available from: https://dx.doi.org/10.1016/j.ejca.2011.11.036
  2. Grossmann P, Stringfield O, El-Hachem N, Bui MM, Velazquez ER, Parmar C, et al. Defining the biological basis of radiomic phenotypes in lung cancer. eLife. 2017;6:1–22. Available from: https://dx.doi.org/10.7554/elife.23421
  3. Timmeren JEv, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into Imaging. 2020;11(1):1–16. Available from: https://dx.doi.org/10.1186/s13244-020-00887-2
  4. Leite AF, Vasconcelos KdF, Willems H, Jacobs R. Radiomics and Machine Learning in Oral Healthcare. PROTEOMICS – Clinical Applications. 2020;14(3):1900040. Available from: https://dx.doi.org/10.1002/prca.201900040
  5. Rogers W, Seetha ST, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim A, et al. Radiomics: from qualitative to quantitative imaging. The British Journal of Radiology. 2020;93(1108):20190948. Available from: https://doi.org/10.1259/bjr.20190948
  6. Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. La radiologia medica. 2021;126(10):1296–1311. Available from: https://doi.org/10.1007/s11547-021-01389-x
  7. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magnetic Resonance Imaging. 2012;30(9):1234–1248. Available from: https://dx.doi.org/10.1016/j.mri.2012.06.010
  8. Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert Review of Precision Medicine and Drug Development. 2016;1(2):207–226. Available from: https://dx.doi.org/10.1080/23808993.2016.1164013
  9. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563–577. Available from: https://dx.doi.org/10.1148/radiol.2015151169
  10. Baeßler B, Weiss K, Santos DPd. Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging. Investigative Radiology. 2019;54(4):221–228. Available from: https://dx.doi.org/10.1097/rli.0000000000000530
  11. Timmeren JEv, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into Imaging. 2020;11(1):1–16. Available from: https://dx.doi.org/10.1186/s13244-020-00887-2
  12. Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. La radiologia medica. 2021;126(10):1296–1311. Available from: https://dx.doi.org/10.1007/s11547-021-01389-x
  13. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications. 2014;5(1):1–9. Available from: https://doi.org/10.1038/ncomms5006
  14. Tarakçı ÖD, Kış HC, Amasya H, Öztürk İ, Karahan E, Orhan K. Radiomics-Based Diagnosis in Dentomaxillofacial Radiology: A Systematic Review. Journal of Imaging Informatics in Medicine. 2024;38(4):2428–2461. Available from: https://dx.doi.org/10.1007/s10278-024-01307-3
  15. Kocak B, Durmaz ES, Ates E, Kilickesmez O. Radiomics with artificial intelligence: a practical guide for beginners. Diagnostic and Interventional Radiology. 2019;25(6):485–495. Available from: https://dx.doi.org/10.5152/dir.2019.19321
  16. McCague C, Ramlee S, Reinius M, Selby I, Hulse D, Piyatissa P, et al. Introduction to radiomics for a clinical audience. Clinical Radiology. 2023;78(2):83–98. Available from: https://dx.doi.org/10.1016/j.crad.2022.08.149
  17. Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation. PLoS ONE. 2014;9(7):e102107. Available from: https://dx.doi.org/10.1371/journal.pone.0102107
  18. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine Learning for Medical Imaging. RadioGraphics. 2017;37:505–515. Available from: https://dx.doi.org/10.1148/rg.2017160130
  19. Kocak B, Yardimci AH, Bektas CT, Turkcanoglu MH, Erdim C, Yucetas U, et al. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation. European Journal of Radiology. 2018;107:149–157. Available from: https://dx.doi.org/10.1016/j.ejrad.2018.08.014
  20. Varghese BA, Cen SY, Hwang DH, Duddalwar VA. Texture Analysis of Imaging: What Radiologists Need to Know. American Journal of Roentgenology. 2019;212(3):520–528. Available from: https://dx.doi.org/10.2214/ajr.18.20624
  21. Park JE, Kim D, Kim HS, Park SY, Kim JY, Cho SJ, et al. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. European Radiology. 2020;30(1):523–536. Available from: https://dx.doi.org/10.1007/s00330-019-06360-z
  22. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2):328–338. Available from: https://dx.doi.org/10.1148/radiol.2020191145
  23. Vickers AJ, Elkin EB. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. Medical Decision Making. 2006;26(6):565–574. Available from: https://dx.doi.org/10.1177/0272989x06295361
  24. Hung KF, Ai QYH, Wong LM, Yeung AWK, Li DTS, Leung YY. Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases. Diagnostics. 2022;13(1):110. Available from: https://dx.doi.org/10.3390/diagnostics13010110
  25. Poedjiastoeti W, Suebnukarn S. Application of Convolutional Neural Network in the Diagnosis of Jaw Tumors. Healthcare Informatics Research. 2018;24(3):236–241. Available from: https://dx.doi.org/10.4258/hir.2018.24.3.236
  26. Bispo MS, Júnior MLGdQP, Jr ALA, Santos JNd, Junior BC, Neves FS, et al. Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network. Dentomaxillofacial Radiology. 2021;50(7):20210002. Available from: https://dx.doi.org/10.1259/dmfr.20210002
  27. Chai ZK, Mao L, Chen H, Sun TG, Shen XM, Liu J. Improved Diagnostic Accuracy of Ameloblastoma and Odontogenic Keratocyst on Cone-Beam CT by Artificial Intelligence. Frontiers in Oncology. 2022;11:793417. Available from: https://doi.org/10.3389/fonc.2021.793417
  28. Song Y, Ma S, Mao B, Xu K, Liu Y, Ma J, et al. Application of machine learning in the preoperative radiomic diagnosis of ameloblastoma and odontogenic keratocyst based on cone-beam CT. Dentomaxillofacial Radiology. 2024;53(5):316–324. Available from: https://dx.doi.org/10.1093/dmfr/twae016
  29. Sha X, Wang C, Sun J, Qi S, Yuan X, Zhang H, et al. CBCT radiomics features combine machine learning to diagnose cystic lesions in the jaw. Dentomaxillofacial Radiology. 2025;54(5):381–388. Available from: https://dx.doi.org/10.1093/dmfr/twaf024
  30. Zhao Y, Wu J, Zhang Q, Hua Z, Qi W, Wang N, et al. Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy. Journal of Magnetic Resonance Imaging. 2021;53(4):1066–1079. Available from: https://dx.doi.org/10.1002/jmri.27424
  31. Gündüz E, Alçin ÖF, Kizilay A, Piazza C. Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors. Current Opinion in Otolaryngology & Head & Neck Surgery. 2022;30(2):107–113. Available from: https://dx.doi.org/10.1097/moo.0000000000000782
  32. Jiang J, Hu YC, Tyagi N, Sample C, Wu J. Research on the Practical Classification and Privacy Protection of CT Images of Parotid Tumors based on ResNet50 Model. Journal of Physics: Conference Series, 4th International Conference on Artificial Intelligence, Automation and Control Technologies (AIACT 2020) 24-26 April 2020, Hangzhou, China. 2020;1576(1). Available from: https://doi.org/10.1088/1742-6596/1576/1/012040
  33. Zhang MH, Hasse A, Carroll T, Pearson AT, Cipriani NA, Ginat DT. Differentiating low and high grade mucoepidermoid carcinoma of the salivary glands using CT radiomics. Gland Surgery. 2021;10(5):1646–1654. Available from: https://dx.doi.org/10.21037/gs-20-830
  34. Kise Y, Ikeda H, Fujii T, Fukuda M, Ariji Y, Fujita H, et al. Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images. Dentomaxillofacial Radiology. 2019;48(6):20190019. Available from: https://dx.doi.org/10.1259/dmfr.20190019
  35. Rosa CSD, Bergamini ML, Palmieri M, Sarmento DJdS, Carvalho MOd, Ricardo ALF, et al. Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis. Heliyon. 2020;6(10):e05194. Available from: https://dx.doi.org/10.1016/j.heliyon.2020.e05194
  36. OLG, MFSO, JTM, Cuellar NGM, Marin NP. Radiomic Parameters in Periapical Lesions: A CBCT Analysis Evaluating Volumetric Size, Cortical Expansion, Erosion, and Shape. European Endodontic Journal. 2024;9(4):394–404. Available from: https://doi.org/10.14744/eej.2024.45220
  37. Ito K, Kondo T, Andreu-Arasa VC, Li B, Hirahara N, Muraoka H, et al. Quantitative assessment of the maxillary sinusitis using computed tomography texture analysis: odontogenic vs non-odontogenic etiology. Oral Radiology. 2022;38(3):315–324. Available from: https://dx.doi.org/10.1007/s11282-021-00558-y
  38. He S, Zhao Y, Shi L, Yang X, Wang X, Luo Y, et al. Utilizing radiomics for differential diagnosis of inverted papilloma and chronic rhinosinusitis with polyps based on unenhanced CT scans. Scientific Reports. 2024;14(1):1–12. Available from: https://dx.doi.org/10.1038/s41598-024-70134-x
  39. Deng Z, Wang B, Zhu Z. BE-FNet: 3D Bounding Box Estimation Feature Pyramid Network for Accurate and Efficient Maxillary Sinus Segmentation. Mathematical Problems in Engineering. 2020;2020(1):1–16. Available from: https://dx.doi.org/10.1155/2020/5689301
  40. Orhan K, Driesen L, Shujaat S, Jacobs R, Chai X. Development and Validation of a Magnetic Resonance Imaging‐Based Machine Learning Model for TMJ Pathologies. BioMed Research International. 2021;2021(1):6656773. Available from: https://dx.doi.org/10.1155/2021/6656773
  41. Ogawa CM, Flaiban E, Ricardo ALF, Lopes DLG, Oliveira LAPd, Almeida BMd, et al. Comparative Evaluation of Temporomandibular Condylar Changes Using Texture Analysis of CT and MRI Images. Applied Sciences. 2024;14(16):7020. Available from: https://dx.doi.org/10.3390/app14167020
  42. Iqbal K, Fatima K, Minhas M, Siddiqui AU, Khizer B, Anique M, et al. Diagnostic Modalities in Oral Pathology: Integrating Advance Diagnostic Techniques to Differentiate Malignant and Benign Lesions. Pakistan Journal of Health Sciences. 2024;5(12):331–339. Available from: https://dx.doi.org/10.54393/pjhs.v5i12.2535
  43. Yuan Y, Ren J, Shi Y, Tao X. MRI-based radiomic signature as predictive marker for patients with head and neck squamous cell carcinoma. European Journal of Radiology. 2019;117:193–198. Available from: https://dx.doi.org/10.1016/j.ejrad.2019.06.019
  44. Thiebot N, Hamdani A, Blanchet F, Dame M, Tawfik S, Mbapou E, et al. Implant failure rate and the prevalence of associated risk factors: a 6-year retrospective observational survey. Journal of Oral Medicine and Oral Surgery. 2022;28(2):19. Available from: https://dx.doi.org/10.1051/mbcb/2021045
  45. Changi KK, Finkelstein J, Papapanou PN. Peri‐implantitis prevalence, incidence rate, and risk factors: A study of electronic health records at a U.S. dental school. Clinical Oral Implants Research. 2019;30(4):306–314. Available from: https://dx.doi.org/10.1111/clr.13416
  46. Troiano G, Fanelli F, Rapani A, Zotti M, Lombardi T, Zhurakivska K, et al. Can radiomic features extracted from intra‐oral radiographs predict physiological bone remodelling around dental implants? A hypothesis‐generating study. Journal of Clinical Periodontology. 2023;50(7):932–941. Available from: https://dx.doi.org/10.1111/jcpe.13797
  47. Tannishtha, Hegde S, Babu GS, Ajila V, Shama BS. The role of radiomics in dentistry and oral radiology. Journal of Stomatology. 2024;77(2):147–152. Available from: https://doi.org/10.5114/jos.2024.139923

COPYRIGHT

© 2025 Published by International Dental Educationists’ Association (IDEA). This is an open-access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/

 

DON'T MISS OUT!

Subscribe now for latest articles, news.