Notice: Undefined offset: 1 in /var/www/jmdr-idea.com/article-detail-page.php on line 103
Alleviating Salivary Microbiome Dysbiosis Associated with Dental Malocclusion Utilizing Low-level Laser Therapy
 
  • P-ISSN 2277-3525 E-ISSN 2582-7901

Journal of Multidisciplinary
Dental Research

Article

Journal of Multidisciplinary Dental Research

Volume: 9, Issue: 2, Pages: 52–55

Original Article

Alleviating Salivary Microbiome Dysbiosis Associated with Dental Malocclusion Utilizing Low-level Laser Therapy

Received Date:15 November 2023, Accepted Date:24 November 2023, Published Date:28 December 2023

Abstract

Dental malocclusions have been found to disrupt the balance of oral bacteria, contributing to the development of dental caries and periodontal diseases. Utilizing Low-Level Laser Therapy (LLLT) can potentially restore biodiversity and ecological equilibrium in the oral microbiome, promoting optimal oral health. We propose that administering LLLT with a diode laser emitter emitting visible red light at a wavelength of 970±10 nm and power output of 100mW, can have a positive impact on the oral microbiome. With an exposure area of 6cm2 for a duration of 30 seconds per session (4 sessions per week), it may help prevent dental caries and periodontitis associated with dental malocclusion. We believe that LLLT has the potential to improve the biodiversity of the oral microbiome and promote good oral hygiene and integrity. This non-invasive treatment can serve as an effective therapeutic adjunct by stimulating the oral mucosa.

Keywords: Dental Malocclusion, Dental Caries, Periodontitis, Low Level Laser Therapy

References

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the Normal Bacterial Flora of the Oral Cavity. Journal of Clinical Microbiology. 2005;43(11):5721–5732. Available from: https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  2. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends in Microbiology. 2005;13(12):589–595. Available from: https://doi.org/10.1016/j.tim.2005.09.006
  3. Kado I, Hisatsune J, Tsuruda K, Tanimoto K, Sugai M. The impact of fixed orthodontic appliances on oral microbiome dynamics in Japanese patients. Scientific Reports. 2020;10(1):21989. Available from: https://doi.org/10.1038/s41598-020-78971-2
  4. Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet. 2007;369(9555):51–59. Available from: https://doi.org/10.1016/S0140-6736(07)60031-2
  5. Streckfus CF, Bigler LR. Saliva as a diagnostic fluid. Oral Diseases. 2002;8(2):69–76. Available from: https://doi.org/10.1034/j.1601-0825.2002.1o834.x
  6. Filoche S, Wong L, Sissons CH. Oral Biofilms: Emerging Concepts in Microbial Ecology. Journal of Dental Research. 2010;89(1):8–18. Available from: https://doi.org/10.1177/0022034509351812
  7. Williams RC, Barnett AH, Claffey N, Davis M, Gadsby R, Kellett M, et al. The potential impact of periodontal disease on general health: a consensus view. Current Medical Research and Opinion. 2008;24(6):1635–1643. Available from: https://doi.org/10.1185/03007990802131215
  8. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192:5002–5019. Available from: https://doi.org/10.1128/JB.00542-10
  9. Horz HPP, Conrads G. Diagnosis and anti-infective therapy of periodontitis. Expert Review of Anti-infective Therapy. 2007;5(4):703–715. Available from: https://doi.org/10.1586/14787210.5.4.703
  10. Liebert A, Bicknell B, Johnstone DM, Gordon LC, Kiat H, Hamblin MR. “Photobiomics”: Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodulation, Photomedicine, and Laser Surgery. 2019;37(11):681–693. Available from: https://doi.org/10.1089/photob.2019.4628
  11. Anders JJ, Lanzafame RJ, Arany PR. Low-Level Light/Laser Therapy Versus Photobiomodulation Therapy. Photomedicine and Laser Surgery. 2015;33(4):183–184. Available from: https://doi.org/10.1089/pho.2015.9848
  12. Freitas LFD, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics. 2016;22(3):348–364. Available from: https://doi.org/10.1109/JSTQE.2016.2561201
  13. Lima PLV, Pereira CV, Nissanka N, Arguello T, Gavini G, Maranduba CMDC, et al. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. Journal of Photochemistry and Photobiology B: Biology. 2019;194:71–75. Available from: https://doi.org/10.1016/j.jphotobiol.2019.03.015
  14. Bicknell B, Liebert A, Johnstone D, Kiat H. Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers in Medical Science. 2019;34(2):317–327. Available from: https://doi.org/10.1007/s10103-018-2594-6
  15. Ottman N, Geerlings SY, Aalvink S, Vos WMD, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Practice & Research Clinical Gastroenterology. 2017;31(6):637–642. Available from: https://doi.org/10.1016/j.bpg.2017.10.001
  16. Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017;66(11):1968–1974. Available from: https://doi.org/10.1136/gutjnl-2016-313271
  17. Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochemistry and Photobiology. 2018;94(2):199–212. Available from: https://doi.org/10.1111/php.12864
  18. Fernandes KPS, Souza NHC, Mesquita-Ferrari RA, Silva DDFTD, Rocha LA, Alves AN, et al. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers. Journal of Photochemistry and Photobiology B: Biology. 2015;153:344–351. Available from: https://doi.org/10.1016/j.jphotobiol.2015.10.015
  19. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, et al. Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics. 2012;13(1):47–58. Available from: https://doi.org/10.1038/nrg3129
  20. Kim SWW, Suda W, Kim SW, Oshima K, Fukuda S, Ohno H, et al. Robustness of Gut Microbiota of Healthy Adults in Response to Probiotic Intervention Revealed by High-Throughput Pyrosequencing. DNA Research. 2013;20(3):241–253. Available from: https://doi.org/10.1093/dnares/dst006
  21. Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, et al. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. Journal of Microbiological Methods. 2016;127:141–145. Available from: https://doi.org/10.1016/j.mimet.2016.05.022
  22. Li Q, Chen Y, Zhang S, Lyu Y, Zou Y, Li J. DNA Enrichment Methods for Microbial Symbionts in Marine Bivalves. Microorganisms. 2022;10(2):393. Available from: https://doi.org/10.3390/microorganisms10020393
  23. Mu DSS, Liang QYY, Wang XMM, Lu DCC, Shi MJJ, Chen GJJ, et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome. 2018;6(1):1–5. Available from: https://doi.org/10.1186/s40168-018-0613-2
  24. Ahannach S, Delanghe L, Spacova I, Wittouck S, Beeck WV, Boeck ID, et al. Microbial enrichment and storage for metagenomics of vaginal, skin, and saliva samples. iScience. 2021;24(11):103306. Available from: https://doi.org/10.1016/j.isci.2021.103306

COPYRIGHT

© 2023 Published by International Dental Educationists’ Association (IDEA). This is an open-access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/

DON'T MISS OUT!

Subscribe now for latest articles, news.