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ABSTRACT

The relationship between microbiome and cancer in the oral cavity has been under intense scrutiny over
the past decade due to the advancement in next-generation sequencing. However, rapid accumulation of
sequencing data may yield more questions than answers. Although such inconclusiveness can be attributed
to the heterogeneous nature of biological phenomena, inconsistency in complex bioinformatics analysis
may also play a role. In this review, we aim to provide a comprehensive and concise overview of common
bioinformatics analysis processes used in microbiome studies focusing on 16S rDNA sequencing. By taking
this bioinformatics perspective as a conceptual framework, we further discussed the consistency and
discrepancies among numerous studies on the relationship between oral microbiome and oral cancer. This
review aims to elucidate the bioinformatics methodologies and their impact on the current understanding
of the oral microbiomes role in cancer development.
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1 INTRODUCTION

The oral microbiome, the second largest microbiome in the
human body, plays a critical role in maintaining both oral
and systemic health "?), Dysbiosis within this microbiome
is a primary factor in dental diseases such as caries®®
and periodontal disease®. Moreover, the oral microbiome
has been linked either directly or indirectly to systemic
conditions, including diabetes ©), infective endocarditis?,
stroke®, and Alzheimer’s disease®. Thus, the oral micro-
biome is considered an integral part of the human body, co-
evolving with the host’s physiological and pathological states.

The relationship between the oral microbiome and cancer
development has gained significant attention, particularly
concerning oral squamous cell carcinoma (OSCC), which
accounts for 90% of all oral cancer incidences!?). Motivated
by the well-documented association between Helicobacter
pylori and gastric cancer!V), as well as the more recently
recognized link between Fusobacterium nucleatum and
colorectal cancer!?, researchers are increasingly con-
cerned about the role of the oral microbiome in the
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development and progression of OSCC!®. This concern
has prompted numerous studies over the past decade,
primarily using 16S rDNA sequencing, to explore the
intricate pathophysiological mechanisms involving bacteria,
tumor microenvironment, and cancer cells!*!¥, Given
the multitude of studies on the oral microbiome and
cancer, a deep understanding and robust methodology in
bioinformatics analysis is crucial, yet often underestimated.
The inconsistency in analysis processes across studies
highlights the need for standardization and precision. In
this review, we aim to present a comprehensive and concise
overview of the bioinformatics analysis methods used in 16S
rDNA amplicon sequencing. Additionally, we will outline
the association between the microbiome and oral cancer,
address microbiome-associated clinical factors and their
influences on treatment and prognosis and discuss potential
future research directions in this rapidly growing field.
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1.1 Overview of bioinformatics analysis process

The Qiime2 computational ecosystem, a suite of analysis
toolkits integrating methods from various sources, is com-
monly used to process and analyze microbiome sequencing
data'®. Starting from raw sequencing reads produced by
sequencing machines (either Illumina or PacBio), the first
step of the computational pipeline is to group reads with
similar sequences together. There are two algorithms to
achieve this: denoising and clustering, which generate ampli-
con sequence variants (ASVs) and operational taxonomic
units (OTUs), respectively. Denoising algorithms, such as
DADA2 7, monitor the error rate introduced during the
sequencing process and recognize reads originating from the
exact same sequence, making them highly reproducible and
precise. However, in some cases, ASVs may be too granular
for comparing sequences across different samples. Therefore,
studies have used clustering algorithms like Vsearch® to
group similar ASVs into OTUs at an arbitrary cutoff, such
as 97% for species-level resolution. For each OTU, one
representative sequence is chosen and compared against
known databases such as SILVA'®) and Greengenes®”,
to assign taxonomy (i.e., species identification) to the
corresponding OTU. The number of reads is then counted
for each OTU in each sample to construct a feature
table, which is the core data structure for subsequent
bioinformatics analyses.

The general purpose of microbiome studies is to compre-
hensively describe collections of diverse microbes. Therefore,
methodologies in ecological studies, which considers com-
plex ecosystems of diverse organisms, are widely used ?!.
Using the feature table (produced by denoising or clustering
algorithms) as a foundation, analyses of microbiome
commonly fall into four categories of numerical methods:
alpha diversity, beta diversity, differential abundance, and
co-occurrence analysis.

1.2 Alpha and beta diversity

Alpha diversity measures how diverse the microbes are con-
tained in each sample, which can be viewed as “intra-sample”
diversity. From each sample, quantitative values for richness
(e.g. observed features), evenness (e.g. Simpson index??)
or both (e.g. Shannon entropy??) can be generated. These
values are then aggregated by groups to be tested statistically.
For pairwise comparison between groups, Mann-Whitney
U test is advised, as alpha diversity values are not normally
distributed (hence not using t-test)®*). A healthy state of
microbiome is commonly characterized by sufficient alpha
diversity, composed of symbiotic, commensal microbes that
outcompetes incoming pathogens 29 On the contrary, a
disease state of the microbiome - i.e. dysbiosis-harbors
more pathogenic bacteria and an imbalanced microbial
community®”. Furthermore, under certain suboptimal
health conditions, e.g. inflammatory bowel disease, the
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intrinsic alpha diversity could decrease, exhibiting a more
fragile ecological system of microbial community 7).

Beta diversity measures the difference between a given
pair of samples, i.e. “inter-sample” diversity. Various met-
rics are calculated to quantify these differences, includ-
ing Euclidean distance, which calculates the straight-line
distance between points in a multi-dimensional space;
Bray-Curtis dissimilarity, which quantifies compositional
dissimilarity based on relative abundances ?®); and UniFrac,
a phylogenetic metric that incorporates evolutionary rela-
tionships between observed organisms?. The resulting
distance matrix can be visualized on a 2D plane (ie.
plotted on a paper) via dimensionality reduction techniques,
such as principal coordinates analysis (PCoA)©?, non-
metric multidimensional scaling (NMDS) G, t-distributed
stochastic neighbor embedding (t-SNE)©?, or uniform
manifold approximation and projection (UMAP)®3. To
date, PCoA is still the most widely used visualization
technique due to the fact that it's simple, linear, and
non-stochastic, hence suitable for moderate sample sizes.
Nonetheless, the rapid increase in sequencing capability
begins to result in large numbers of samples (possibly up
to tens of thousands) in a single study®¥. In such cases,
mathematically sophisticated techniques like t-SNE and
UMAP are required to resolve subtle patterns happening
at different levels of biological phenomena. Together, these
methods enable researchers to visualize and interpret
complex microbial community relationships across different
samples in an intuitive manner.

Both alpha and beta diversity consider the collective
state of microbial communities, providing a holistic, non-
granular overview of the diversity and differences of samples
without focusing on specific taxa of microbes. Nonetheless,
the precision and depth in high-throughput sequencing
allows researchers to inspect the abundance of specific
microbes with regard to disease conditions. By referencing
sequence databases of known microbes 2%, enrichment
and depletion analysis can be performed on a per-taxon
basis, to identify key pathogens related to disease states.

1.3 Differential abundance and co-occurrence
analysis

One of the most widely used methods to reveal microbes
that are differentially abundant across different patient
groups is Linear discriminant analysis Effect Size (LEfSe)
analysis®>. LEfSe combines linear discriminant analysis
(LDA) with non-parametric statistical testing to identify
features (e.g., microbial species) that are both statistically
significant and biologically relevant by estimating the effect
size (LDA score), which represents the magnitude of the
difference in abundance between groups. This approach
allows researchers to pinpoint specific microbial features
that may play crucial roles in disease or health states.
Microbial features reported by LEfSe can be further
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validated statistically using methods like the Mann-Whitney
U test® for pairwise comparisons and the Kruskal-Wallis
test % for multi-class (more than two classes) comparisons,
respectively.

It is noted, however, that there are hundreds of oral
microbial species to be tested. This results in increased
false-positive results, a problem known as the multiple
testing problem 7). To address this, corrections for multiple
comparisons are essential to control the false discovery
rate (FDR). One of the earliest methods developed for
this purpose is the Bonferroni correction®®, which adjusts
the significance threshold by dividing it by the number
of tests performed. While this method is straightforward,
it is often overly stringent, limiting the statistical power
to reveal any biologically relevant targets. In contrast, the
Benjamini-Hochberg procedure is a more modern and
widely used approach that controls the FDR, providing a
balance between identifying true positives and controlling
false positives®”. The Benjamini-Hochberg method is
generally preferred in microbiome research for its ability to
maintain statistical power while appropriately managing the
risk of false discoveries. Through these methods, individual
microbial taxa that are significantly associated with different
conditions can be identified.

In a complex microbial community like the oral micro-
biome, various bacteria coexist either in a symbiotic relation-
ship or exhibit antagonistic competition. These interactions
can be reflected by the abundance of sequencing reads
across multiple samples under different host physiological
conditions. For instance, Streptococcus and Veillonella were
shown to co-occur in the tongue microbiome “9, consistent
with their metabolic interdependence demonstrated in
vitro®). Such co-occurrence analysis is generally based
on Spearman’s correlation “?, as the relationships between
microbes usually do not follow a linear pattern. Co-
occurrence analysis produces a correlation matrix repre-
senting pairwise correlations between any given pair of
microbes. Positive and negative values indicate co-occurring
and mutually exclusive relationships, respectively. This
correlation matrix can be further visualized in a microbial
network to highlight clusters of co-occurring microbes
potentially exhibiting symbiosis.

1.4 Patterns of microbiome associated cancer in the
oral cavity

The relationship between oral microbiome and oral cancer
haslongbeen a subject of research, which has been addressed
in great depth in the context of common oral diseases
such periodontitis ***”). Some studies used oral mucosal
swabs which allow the collection of paired contralateral
normal samples, while others use saliva for a more consistent
sampling process.

The first 16S rDNA study on oral microbiome and oral
cancer was by Schmidt et al., which found that oral cancer
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and precancerous samples had a significantly decreased
abundance of phyla Firmicutes (genus Streptococcus) and
Actinobacteria (genus Rothia)*®. By using the UniFrac
distances based on only 12 taxa, the authors were able to
separate oral cancer samples from the normal ones“®. A
subsequent study on saliva microbiome showed that HNSCC
patients exhibited significantly reduced alpha diversity,
and higher levels of Streptococcus*®. These saliva-derived
findings were opposite to many other studies based on
mucosal swabs, which all indicated increased levels of
alpha diversity, and higher prevalence of Fusobacterium,
Prevotella, Porphyromonas, and Peptostreptococcus on OSCC
sites compared to normal mucosa®*-*?, On the contrary,
Streptococcus was consistently shown to be depleted on
OSCC lesion sites®®52, Of note, most of the OSCC-
associated taxa were periodontal pathogens, which were
further demonstrated in a study using metagenomic shot-
gun sequencing®¥. An additional saliva-based study also
showed increased Fusobacterium and decreased Streptococ-
cus in OSCC patients compared to oral leukoplakia and post-
operative patients ®. Furthermore, a saliva study involving
248 subjects of all OSCC stages (I to IV) clearly showed
increasing Fusobacterium and decreasing Streptococcus with
cancer progression®®. Finally, a meta-analysis by Yu
et al. integrating 18 studies involving 1056 participants
concluded that OSCC patients are enriched in Fusobacteria
(genus Fusobacterium) but depleted in Actinobacteria and
Firmicutes (genus Streptococcus)*®).

1.5 Treatment and prognostic factors

To date, various oral cancer-related clinical factors have
been examined with regard to the oral microbiome.
Similarly, information in the oral microbiome was utilized
as a prognostic biomarker during the treatment process
of OSCC. An intriguing study related to HPV status
indicated that the presence of Fusobacterium is linked to
better survival outcomes in OSCC patients, particularly
those without traditional risk factors®”. In addition,
two studies have examined the effect of conventional
treatment on the saliva microbiome, revealing a prolonged
decrease in alpha diversity for months to years following
surgery and chemotherapy ®®>). Compositional differences
in microbiome were reported between responders and non-
responders of chemotherapy, suggesting the use of microbial
signatures as prognostic indicators®®. Given the robust
associations between microbiome composition and cancer
prognosis, as well as the observed impact of treatment
on microbial diversity, a non-invasive early detection test
(The CancerDetect for Oral & Throat cancer™, or CDOT)
utilizing salivary host and microbiome RNA signature was
developed to offer high specificity (94%) and sensitivity
(90%) for OSCC detection ©0).
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Fig. 1: Computational workflow for microbiome analysis ( The analysis starts with sequencing reads, followed by ASV denoising/OTU
clustering and taxonomy assignment to create a feature table. Downstream analyses include alpha and beta diversity, co-occurrence
analysis, and differential abundance, highlighting taxa enriched in normal versus cancer samples)

2 CONCLUDING REMARKS

This review highlights the critical role of the oral micro-
biome in OSCC development and progression, in the
context of the bioinformatics analysis for 16S rDNA
sequencing. Standardizing bioinformatics methodologies
and facilitating collaborative data sharing will be essential
to ensure consistency and reproducibility in research. Future
directions include the use of mouse models to elucidate
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mechanistic insights and validate the causative roles of
specific microbes in cancer(®%?, Additionally, integrating
multi-omics data-including metagenomics, metatranscrip-
tomics, metabolomics, and host genomics-will provide a
comprehensive view of the complex host-microbiome inter-
actions and uncover hidden mechanisms driving OSCC ©¢®,
Advancements in oral microbiome research may pave
the way for developing precise, non-invasive diagnostic
tools and personalized therapies, ultimately improving
management of oral cancer.
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